„Wechselrichter“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
deine oma
Zeile 11: Zeile 11:
Es gibt elektromechanische [[Zerhacker (Elektrotechnik)|Zerhacker]], [[Motorgenerator]] und elektronische Wechselrichter mit Röhren oder Halbleitern, (Prinzip von [[Oszillator]] oder [[Multivibrator|astabiler Kippstufe/Multivibrator]])
Es gibt elektromechanische [[Zerhacker (Elektrotechnik)|Zerhacker]], [[Motorgenerator]] und elektronische Wechselrichter mit Röhren oder Halbleitern, (Prinzip von [[Oszillator]] oder [[Multivibrator|astabiler Kippstufe/Multivibrator]])


=== Steuerung ===
=== Ich ficke deine oma ins koma ===
Man unterscheidet zwei Steuerungsarten von Wechselrichtern:
Man unterscheidet zwei Steuerungsarten von Wechselrichtern:



Version vom 2. November 2017, 13:14 Uhr

Ein Wechselrichter (auch Inverter) ist ein elektrisches Gerät, das Gleichspannung in Wechselspannung, also Gleichstrom in Wechselstrom umrichtet. Wechselrichter bilden, neben Gleichrichtern, Gleichspannungswandlern und Umrichtern, eine Untergruppe der Stromrichter.

Kompakter Wechselrichter von 24 V Gleichspannung auf 230 V Wechselspannung

Allgemeines

Wechselrichter können je nach Schaltung für die Erzeugung von einphasigem oder dreiphasigem (Drehstrom) Wechselstrom ausgelegt sein. Modelle mit Halbleitern aus Siliziumkarbid erreichen Wirkungsgrade bis etwa 99 Prozent.[1]

Angewendet werden Wechselrichter dort, wo ein elektrischer Verbraucher Wechselspannung zum Betrieb benötigt, aber nur eine Gleichspannungsquelle, wie zum Beispiel eine Autobatterie, zur Verfügung steht. Eine wichtige Anwendung ist auch, Gleichstrom in ein Wechsel- oder Drehstromnetz einzuspeisen, etwa bei ins Stromnetz einspeisenden Photovoltaik-Anlagen zur Stromerzeugung.

Arten

Es gibt elektromechanische Zerhacker, Motorgenerator und elektronische Wechselrichter mit Röhren oder Halbleitern, (Prinzip von Oszillator oder astabiler Kippstufe/Multivibrator)

Ich ficke deine oma ins koma

Man unterscheidet zwei Steuerungsarten von Wechselrichtern:

  • Selbstgeführte Wechselrichter, auch Inselwechselrichter, verwenden Transistoren, zum Beispiel IGBTs. Sie dienen der Umwandlung von Gleichspannung in Wechselspannung, als Nebenfall ist auch der umgekehrte Weg möglich. Da die Ventile mit einem vom Wechselrichter selbst erzeugten Takt an- und ausgeschaltet werden können, ist keine Referenz vom Netz nötig. Selbstgeführte Wechselrichter können damit zur Erzeugung einer Wechselspannung unabhängig vom Stromnetz dienen und ein sogenanntes Inselnetz aufbauen (führen – vgl. Netzführung).
  • Fremd- oder netzgeführte Wechselrichter verwenden meist ebenfalls IGBT, aber auch Thyristoren oder Triacs. Sie benötigen zur Funktion eine feste Wechselspannung im Netz und beziehen sogenannte Kommutierungsblindleistung. Sie dienen dazu, Energie von der Gleichspannungsseite in das Wechselstromnetz einzuspeisen, die umgekehrte Richtung ist oft ebenso möglich. Dieser Typ verfügt über eine Abschaltung der Anlage bei Netzstörungen. So wird Überspannung oder Spannung in abgeschalteten Netz-Abschnitten vermieden. Dies wird in der VDE-Norm 0126 geregelt, siehe Einrichtung zur Netzüberwachung mit zugeordneten Schaltorganen.
Anwendungsbeispiele für selbstgeführte Wechselrichter
Anwendungsbeispiele für fremdgeführte Wechselrichter

Form der Ausgangsspannung selbstgeführter Wechselrichter

Ausgangsspannung eines Trapezwechselrichters für den Betrieb von 230-V-Geräten
Spannungsform am Glättungskondensator einer handelsüblichen Kompaktleuchtstofflampe, die an einer Sinusspannung betrieben wird
Spannungsform am Glättungskondensator einer handelsüblichen Kompaktleuchtstofflampe, die an einer Trapezspannung betrieben wird.

Heutzutage sind drei Ausgangsspannungsformen von selbstgeführten Wechselrichtern üblich:

  • Rechteck- und Trapezform:
Rechteck- und Trapezwechselrichter werden oft zur Erzeugung von Wechselspannung mit der Netzspannung gleichendem Effektivwert aus Gleichspannungsquellen (z.B. 12-Volt-Akkumulatoren) verwendet.
Rechteckwechselrichter erzeugen eine Rechteckspannung.
Trapezwechselrichter (im Handel werden sie auch als modifizierter Sinus-, oder Quasi-Sinuswechselrichter bezeichnet) erzeugen ebenfalls eine Rechteckspannung, wobei jedoch zwischen positivem und negativem Rechteck eine Pause liegt (siehe nebenstehendes Bild).
Rechteck- und Trapezwechselrichter lassen sich kostengünstiger herstellen als Sinuswechselrichter, da hier auf die aufwendige Pulsweitenmodulation, die im Sinuswechselrichter vorhanden ist, verzichtet wird. Die rechteckige Ausgangsspannung ist für manche Geräte, die damit betrieben werden, problematisch, da sie stark von der Sinusspannung abweicht. Transformatoren, Motoren und Heizgeräte können zwar mit rechteckförmiger Spannung betrieben werden, die steilen Spannungsanstiege verursachen jedoch Störemissionen. Solche Wechselrichter sind unproblematisch für Geräte, die sich ohmsch verhalten (z.B. Glühlampen, Heizgeräte). Problematisch an Trapezwechselrichtern sind Geräte, die ihre Leistung durch Triacs steuern (Staubsauger, manche moderne Kaffeemaschinen) - sie funktionieren eingeschränkt oder gar nicht. Einige Spezialmonitore oder auch Kühlschränke mit Elektrothermostat erkennen manchmal einen Unterschied und zeigen eine Störung an, wenn keine Sinuswechselspannung anliegt.
  • Sinusform
Sinuswechselrichter erzeugen aus einer Gleichspannung eine Sinuswechselspannung. Sie eignen sich für alle Geräte, auch solche mit kapazitivem Verhalten (LED-Lampen, Kompaktleuchtstofflampen, Schaltnetzteile). Auch Sinuswechselrichter erzeugen Störungen, diese sind jedoch gering. Die Störungen rühren daher, dass die Sinusform mittels einer pulsweitenmodulierten Rechteckspannung, meist im zweistelligen kHz-Bereich, synthetisiert wird.

Bei induktiven Lasten (Motoren, Kühlschränke, Werkzeuge) muss aufgrund des Anlaufstromes die Spitzenleistung des Wechselrichters ausreichend hoch sein. Der Notwendigkeit, für Millisekunden einen ca. zehnmal so hohen Anlaufstrom zu benötigen, tragen höherwertige Modelle Rechnung. Sie vertragen kurzzeitig eine dreimal so hohe Last wie ihre angegebene Dauer-Nennleistung.

Anwendungen

Photovoltaik

Ein Wechselrichter montiert unter einer Solar-Freiflächenanlage

Ein Solarwechselrichter ist Teil einer Solaranlage. Auf der Eingangsseite befindet sich üblicherweise ein oder mehrere Gleichstromsteller mit Maximum-Power-Point-Tracker, den ein Mikroprozessor steuert und den Zwischenkreis speist. Auf der Ausgangsseite befindet sich ein ein- bis dreiphasiger Wechselrichter und synchronisiert sich automatisch mit dem Stromnetz.

Unterbrechungsfreie Stromversorgungen (USV)

Eine USV enthält einen Wechselrichter, der bei Stromausfall im einfachsten Fall mit einem Relais statt des Netzes an die Verbraucher geschaltet wird. Die kurze Umschaltpause von einigen Millisekunden wird von den meisten Verbrauchern toleriert. Der Wechselrichter arbeitet aus einem Akkumulator, der bei vorhandenem Netz mit einer Ladeschaltung geladen und auf der Ladeschlussspannung gehalten wird. Ältere USV arbeiteten mit einem netzfrequenten Transistor-Zerhacker und einem nachfolgenden netzfrequenten Transformator, heutige Geräte benutzen höherfrequente PWM-Wechselrichter und sind daher leichter.

Frequenzumrichter und Netzrückspeisung

Eine weitere Anwendung findet der Wechselrichter als Komponente eines Frequenzumrichters. Hier wird aus einer Wechselspannung nach Gleichrichtung (Zwischenkreis) eine Wechselspannung anderer Frequenz erzeugt. Damit kann beispielsweise ein Asynchronmotor in der Drehzahl geregelt werden. Die Energie beim Abbremsen des Motors, er arbeitet dann als Generator, wird bei einfachen Frequenzumrichtern in einem Bremswiderstand in Wärme umgewandelt. Um diese Energie stattdessen ins Netz rückspeisen zu können, kann am Zwischenkreis ein netzgeführter Wechselrichter angeschlossen werden. Es entsteht ein 4-Quadranten-Umrichter. Solche Umrichter können auch ohne Gleichrichter und Zwischenkreis realisiert werden (Matrix-Umrichter).

An drehzahlveränderlichen Wasser- oder Windkraftanlagen ist ebenfalls ein 4-Quadranten-Umrichter erforderlich.

Wechselrichter in Kraftfahrzeugen

Wechselrichter für den Anschluss an den Zigarettenanzünder

Wechselrichter für den Einsatz in Kraftfahrzeugen sind meist für den Anschluss an den Zigarettenanzünder oder für Festanschluss (Wohnmobile, Busse, LKW) ausgelegt. Es gibt sie für 12 Volt (PKW) und 24 Volt (LKW, Busse).

Der erste Fahrzeughersteller, der in einem Serien-PKW einen Wechselrichter mit der Netzspannung 230 V anbot, war die Volkswagen AG. Mittlerweile sind für verschiedene PKW-Modelle Wechselrichter mit einer Steckdose für Eurostecker als Sonderausstattung zu haben, Wechselrichter mit Haushaltssteckdosen sind auch erhältlich.

Beim Betrieb von Wechselrichtern höherer Leistung über den Zigarettenanzünder an einem 12-Volt-Bordnetz ist zu beachten, dass bei der niedrigen Spannung von 12 V ein sehr hoher Strom geführt werden muss (Wärmeentwicklung, Kontaktbelastung). Der Zigarettenanzünder ist in der Regel mit 15 A abgesichert und sollte dauerhaft nicht mit mehr als 10 A belastet werden, um die Kontakterwärmung in Grenzen zu halten. Es können also nur Verbraucher mit bis etwa 100 bis 150 Watt Dauer-Leistungsaufnahme am Zigarettenanzünder betrieben werden. Zudem sind die starke Belastung der Bordbatterie und deren geringe Zyklenlebensdauer zu beachten. Eine Entladetiefe von unter 30 % sollte vermieden werden; somit lassen sich aus einer üblichen 50-Ah-Batterie sinnvoll max. 35 Ah entnehmen.

Bei laufendem Motor muss beachtet werden, dass die Lichtmaschine zwar einen Ladestrom im Bereich von 50 A liefern kann, ein beträchtlicher Teil aber durch die Beleuchtung und andere Verbraucher aufgenommen wird, wodurch bereits bei einem Laststrom von 20 A zusätzlich eine Entladung der Batterie stattfinden kann.

Wechselrichter, die für den Einsatz in Kraftfahrzeugen vorgesehen sind, müssen eine E-Kennzeichnung enthalten. Dieses Zeichen weist darauf hin, dass das Bauteil die erforderlichen Prüfungen und Genehmigungen bestanden hat und somit in Kraftfahrzeugen eingebaut werden darf.

Beleuchtung

Inverter aus dem Sockel einer Kompaktleuchtstofflampe

Anwendung findet der Inverter, hier in Form eines Resonanzwandlers, bei Leistungen im Bereich von einigen 10 W als elektronisches Vorschaltgerät in Leuchtstofflampen.

Ein weiteres großes Anwendungsgebiet dieser Inverter ist die Stromversorgung von Leuchtröhren (CCFL), die häufig als Hintergrundbeleuchtung für TFT-Flachbildschirme verwendet werden.

Aufbau früher und heute

Mechanisch

Wechselrichter können elektromechanisch als Zerhacker oder Motorgenerator oder elektronisch mit Röhren oder Halbleiter realisiert werden. Bei den früher üblichen Zerhackern (Kontaktwechselrichter) polt ein mechanischer Kontakt periodisch die zugeführte Gleichspannung mit einem Wagnerschen Hammer um. Den dabei auftretenden Kontaktverschleiß verringerte der Turbowechselrichter. Bei ihm sind die periodisch schaltenden Kontakte durch einen Quecksilberstrahl ersetzt, der sich in einer geschlossenen Kammer von einem Motor betrieben im Kreis dreht.

Mit Elektronenröhren

Mit Vakuumröhren realisierte Wechselrichter sind nur für kleinere Leistungen geeignet, sind mechanisch empfindlich und wurden kaum gebaut. Wechselrichter größerer Leistung wurden mit steuerbaren Quecksilberventilen (Thyratrons) realisiert. Später verwendete man für diesen Zweck Thyristoren (mit Löschthyristor oder aus GTO).

Mit Halbleitern

Alle diese Frequenzumrichter arbeiteten im Takt der Frequenz der zu erzeugenden Wechselspannung und konnten keine Sinus-Ausgangsspannung erzeugen. Diese Wechselrichter sind in der Schaltfrequenz daher auf wenige hundert Hertz begrenzt, meist arbeiteten sie mit 50 Hz. Leistungstransistoren (Bipolartransistoren, MOSFET, IGBT) können das Zerhacken der Gleichspannung mit hoher Effizienz und ohne Verschleiß bewerkstelligen, sie arbeiteten u. a. in USV im Rechteckbetrieb mit 50 Hz und speisten wie auch früher die Zerhacker einen 50-Hz-Transformator. Eine solche Schaltung wäre z. B. ein Vierquadrantensteller.

Transistoren ermöglichen jedoch auch Schaltfrequenzen bis zu einigen 10 kHz und arbeiten dann im Chopperbetrieb. Dies wird auch als Unterschwingungsverfahren bezeichnet: Mit den als Schaltelemente verwendeten Transistoren (meist IGBT) wird durch Pulsweitenmodulation (PWM) im Chopperbetrieb eine Sinus-Wechselspannung aus kurzen Pulsen hoher Frequenz (einige bis über 20 kHz) nachgebildet (Sinus-Wechselrichter). Die Transistoren polen, wie auch früher die Zerhacker, die Gleichspannung periodisch um, jedoch mit höherer Frequenz. Der Mittelwert der hochfrequenten, pulsweitenmodulierten Schaltfrequenz ist die Ausgangs-Wechselspannung. Man setzt also die Ausgangswechselspannung aus kleinen, unterschiedlich breiten Impulsen zusammen und nähert so den netzüblichen sinusförmigen Spannungsverlauf an. Zur Glättung der PWM dienen Drosseln, die jedoch viel kleiner sind als solche, die für die Glättung der Ausgangswechselspannung früherer Wechselrichter erforderlich waren. Bei Motoren kann auf eine Drossel ganz verzichtet werden. Die Grundschaltungen sind in Schaltnetzteilen zu finden. Der Unterschied besteht in der modulierten Referenzspannung zur Steuerung der Ausgangsspannung.

Siehe auch

Literatur

  • Klaus Bystron: Leistungselektronik. Technische Elektronik Band II. Hanser, München / Wien 1979, ISBN 3-446-12131-5.
  • Gert Hagmann: Leistungselektronik. 4. Auflage, Aula, Wiebelsheim 2009, ISBN 978-3-89104-732-3.
  • Peter Bastian u.a. : Fachkunde Elektrotechnik. 28. Auflage, Europa-Lehrmittel, Haan-Gruiten, 1996, ISBN 978-3-8085-3189-1.
  • Wolf-Günter Gfrörer, Wechselrichter für Solaranlagen. Leistungselektronik zur Erzeugung von 230V-Wechselspannung aus der Solarbatterie. Franzis, Poing 1998, ISBN 3-7723-4952-8.
Commons: DC/AC Inverters (power) – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Wechselrichter – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Fraunhofer ISE (Hrsg.): Fraunhofer ISE verbessert eigenen Weltrekord - Über 99 Prozent Wirkungsgrad bei Photovoltaik-Wechselrichtern . 2009, 29. Juli 2009 (Presseinformation).